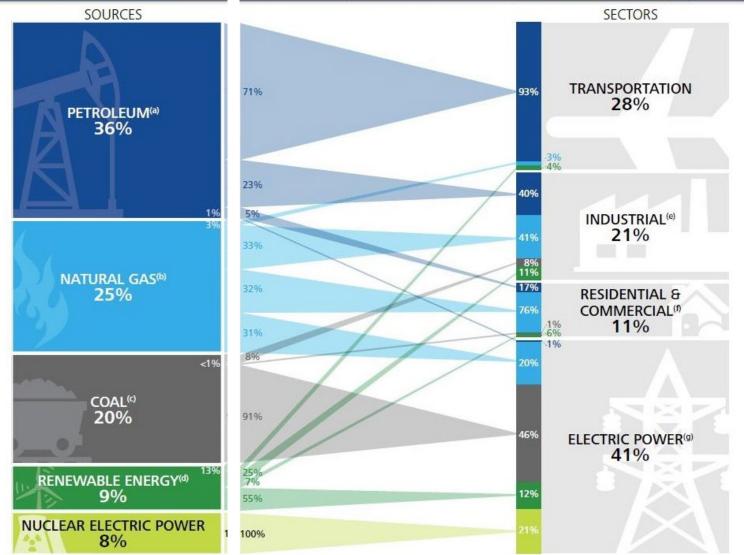


MISSION: TO ADVANCE ECONOMIC PROSPERITY, HEALTH AND QUALITY OF LIFE IN INDIANA AND BEYOND.

BEYOND THE LOW HANGING FRUIT ENERGY EFFICIENCY GAINS FOR ADVANCED COMPANIES

Energy Basics

Systems Approach


Maintenance

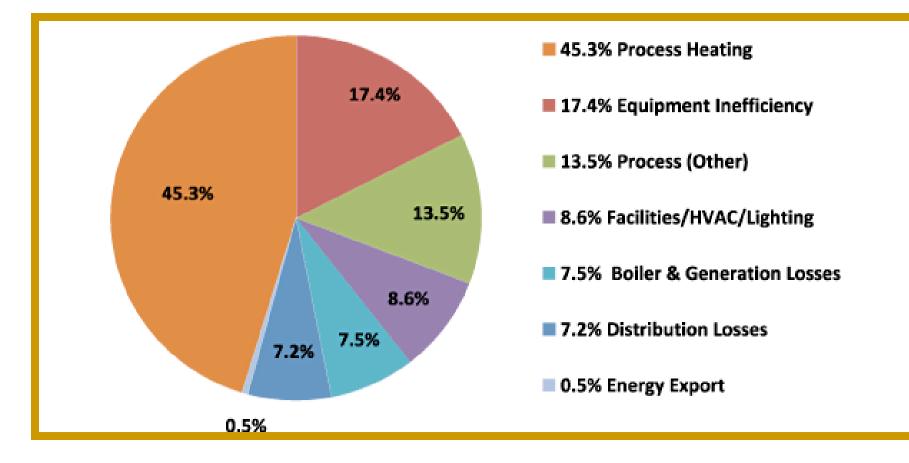
Soft Benefits of Green Building

New Technologies

<u>WHERE ENERGY GETS USED</u>

MANUFACTURING EXTENSION PARTNERSHIP

Source: Terzic, Branko. 2011. "Energy Independence and Security: A Reality Check." Deloitte University Press. 4



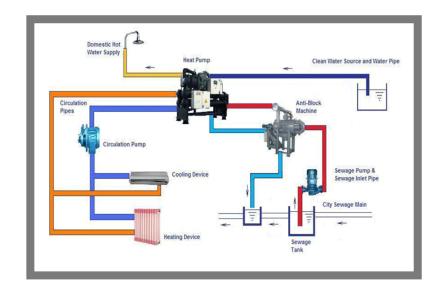
COMMERCIAL ENERGY CONSUMPTION

INDUSTRIAL ENERGY CONSUMPTION

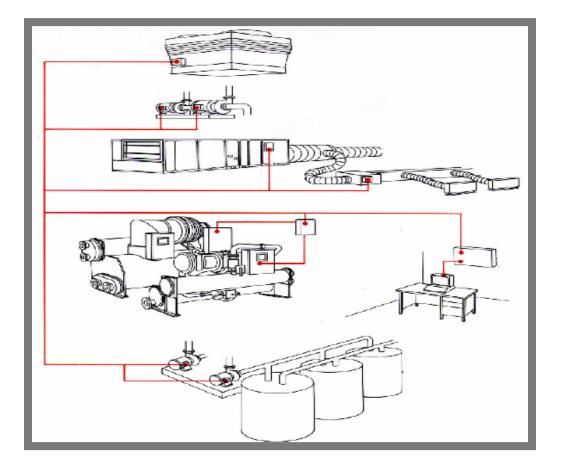
EASY ENERGY EFFICIENCY

Energy Basics Systems Approach Maintenance Soft Benefits of Green Building New Technologies

IMPORTANCE OF A SYSTEMS APPROACH


MANUFACTURING EXTENSION PARTNERSHIP

Looking beyond individual components -- looking at the system as a whole


• Boiler vs. Steam System

Ę

- First Cost vs. *Life Cycle* Costs
- Pump vs. Water Pumping System

SYSTEM LIFE CYCLE COST COMPONENTS

What are the system costs of an HVAC system?

MANUFACTURING EXTENSION PARTNERSHIP

PURDUE UNIVERSITY

MANUFACTURING EXTENSION PARTNERSHIP

LIFE CYCLE COST COMPONENTS

1. Installation Costs

Ę

- □ Capital expenditure
- Expenses
- **Labor**
- Materials
- **D** Engineering

LIFE CYCLE COST COMPONENTS

- 2. Energy Costs Based on:
- Efficiency
- Operating hours
- Electricity rates

Up to 8 times larger than installation cost

LIFE CYCLE COST COMPONENTS

MANUFACTURING EXTENSION PARTNERSHIP

3. Maintenance Cost

Typically between 5% to 10% of installation cost *annually*

LIFE CYCLE COST COMPONENTS

4. Lost Production Cost

Ę

- Lost sales & opportunities
- Overtime
- □ Late shipping charges
- Domino effect on just-in-time supply chains

MANUFACTURING EXTENSION PARTNERSHIP

STORY PROBLEM: FOUR NEW FANS Story Problem # 1

MANUFACTURING EXTENSION PARTNERSHIP

Situation: Four fans in an HVAC system need to be replaced

Two options. Which is more cost effective?

STORY PROBLEM: FOUR NEW FANS Option #1:

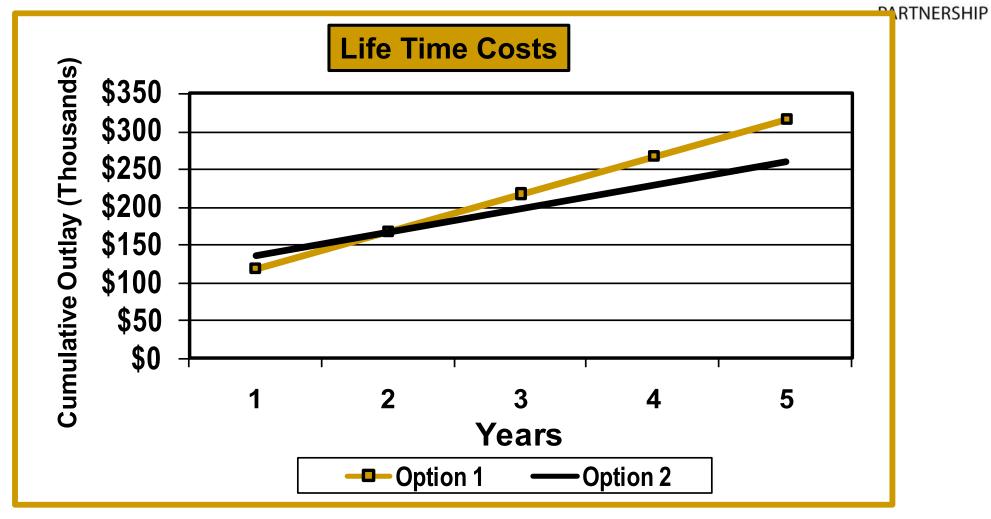
MANUFACTURING EXTENSION PARTNERSHIP

50 hp radial fans with flat blades Total installation cost = \$70,000 Fan efficiency = 55% Resultant annual energy cost = \$48,000 Annual Preventive Maintenance Cost = \$1,000

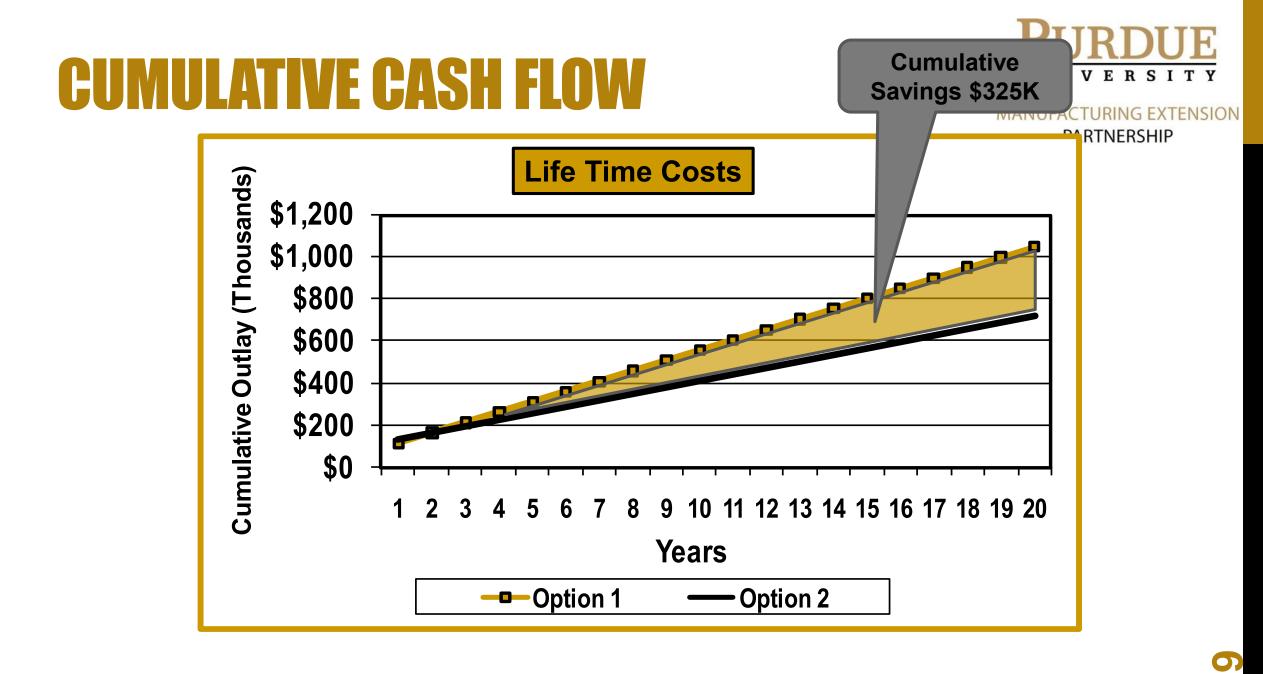
Option #2:

40 hp radial fans with airfoil blades Total installation cost = \$105,000 Fan efficiency = 85% Resultant annual energy cost = \$30,000 Annual Preventive Maintenance Cost = \$1,000

A SIMPLE SYSTEM COST ANALYSIS

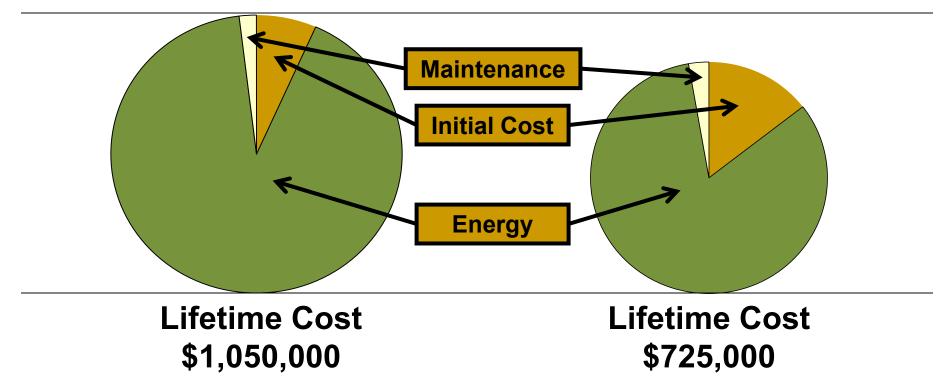


			ACTURING EXTENSION
System Costs	Option 1	Option 2	PARTNERSHIP
Installation Costs (occurs in Year 1) A	\$70,000	\$105,000	
1. Preventative Maintenance (recurring annual cost)1	\$1,000	\$1,000	
2. Predictive Maintenance (recurring annual cost)2			
3. Energy (recurring annual cost) 3	\$48,000	\$30,000	
4. Lost Production (recurring annual cost)4			
Annual Cost B = (1+2+3+4)	\$49,000	\$31,000	
Cumulative Outlay end Year 1 =A+B	\$119,000	\$136,000	
Cumulative Outlay end Year 2 = A+B+B	\$168,000	\$167,000	1


CASH FLOW - YEARS 1-5

MANUFACTURING EXTENSION

7


OVERALL SYSTEM COSTS OF OPTIONS

Ę

MANUFACTURING EXTENSION PARTNERSHIP

Option #1: Radial Fan Option #2: Airfoil Fan

Energy Basics Systems Approach Maintenance Soft Benefits of Green Building New Technologies

GOOD MAINTENANCE SAVES COSTS

MANUFACTURING EXTENSION PARTNERSHIP

Ę

> Preventive

> Predictive

PREVENTIVE MAINTENANCE

Ę

MANUFACTURING EXTENSION PARTNERSHIP

Strategies to keep a healthy machine in peak performance include:

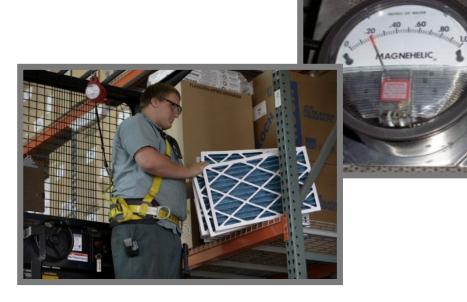
Lubricating bearings

Cleaning impellers and heat exchangers

Aligning shaft and pulleys

Visually inspecting machinery

Balancing impeller


PREVENTIVE MAINTENANCE

MANUFACTURING EXTENSION PARTNERSHIP

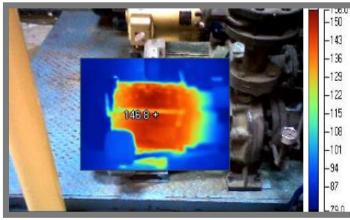
Replacing filters

Maintaining electrical specifications

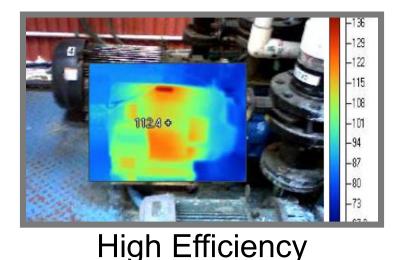
Adjusting linkages of valves/dampers

Verifying correct operation of dampers, valves, controls, automatic drains, and steam traps

PREDICTIVE MAINTENANCE



MANUFACTURING EXTENSION PARTNERSHIP

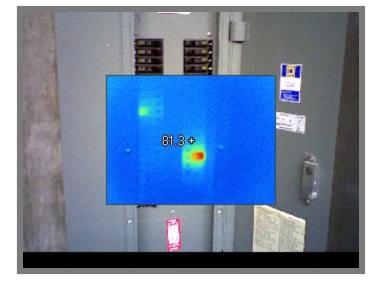

Advanced diagnostic strategies that can avoid an impending breakdown:

Infrared thermography of fan or motor bearings Check strength of wiring insulation

Dynamic analysis of the integrity of a motor

Normal Efficiency

PREDICTIVE MAINTENANCE


MANUFACTURING EXTENSION PARTNERSHIP

✓ LOW-COST & NO-COST ACTIONS IR inspection electrical panels

Vibration analysis of motors

Oil analysis on compressors

MANUFACTURING EXTENSION PARTNERSHIP

Story Problem #2

Option #1: An induced draft fan that receives basic preventive maintenance.

Versus

Option #2: An induced draft fan that receives predictive maintenance plus more frequent preventive maintenance.

MANUFACTURING EXTENSION PARTNERSHIP

Option #1:

An induced draft fan that costs \$40,000/year to operate serves a boiler. Twice a year, it receives the following **preventive maintenance**:

- The bearings are greased
- The motor is cleaned
- The bearings in the dampers are greased

Last year, the fan broke down due to a **bearing failure**. This breakdown caused a **five- hour production outage**. Lost production cost **\$10,000/hour**. Similar outages are anticipated every two years unless something changes.

The cost of the preventive maintenance is **\$500 twice a year.**

PURDUE UNIVERSITY

Option #2:

Ē

MANUFACTURING EXTENSION PARTNERSHIP

An induced draft fan that costs \$40,000/year to operate serves a boiler. Three times a year, it receives the following **preventive maintenance**:

- The bearings are greased
- The motor is cleaned
- The bearings in the dampers are greased

It receives the following predictive maintenance:

- The bearings are monitored for vibration once a month
- The electrical supply is checked every other year

Last year, vibration monitoring picked up a faulty bearing, which maintenance was able to change out during a brief planned outage. A **failure was avoided**, so there was no lost production time.

Two years ago, a check of the electrical supply found that one of the connections in the electrical panel had worked itself loose and was causing a voltage unbalance. The situation was corrected before the motor sustained any damage.

The cost of the preventive maintenance is **\$500 three times a year**.

The cost of the predictive maintenance includes **\$200 every month** for vibration monitoring and **\$500 every other year** to check the electrical supply.

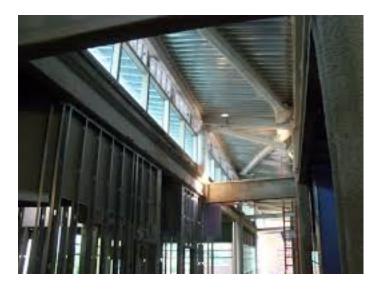
PURDUE UNIVERSITY

Option 1 Option 2 Life Cycle Cost Analysis Installation Costs N/A N/A Α (occurs in Year 1) **1. Preventative Maintenance** \$1,000 \$1,500 1 (recurring annual cost) **2. Predictive Maintenance** \$ \$2,650 0 2 (recurring annual cost) 3. Energy \$40,000 \$40,000 3 (recurring annual cost) 4. Lost Production \$25,000 \$ 0 4 (recurring annual cost) Annual Cost \$44,150 \$66,000 B = (1+2+3+4)Cumulative Outlay end Year 1 = A+B \$66,000 \$44,150 **Cumulative Outlay end Year 2** \$132,000 \$88,300 = A+B+B

MANUFACTURING EXTENSION PARTNERSHIP

Energy Basics Systems Approach Maintenance Soft Benefits of Green Building New Technologies

PRODUCTIVITY IMPROVEMENTS


More rigorous environmental standards
= 16% higher labor productivity

 Workers with a view performed 10% to 25% better on tests of mental function and memory recall

HR COSTS

- Labor is typically the 1st or 2nd largest cost for companies.
- Companies with sustainability goals have higher employee rentention, better recruitment, & reduced turnover.
- Reduced turnover means less time working understaffed, searching for talent, training, and bringing productivity back to 100%.

HEALTHIER BUILDINGS

MANUFACTURING EXTENSION PARTNERSHIP

In terms of health care costs,

building retrofits which improved the indoor environment of a building resulted in reductions of:

- Communicable respiratory diseases of 9-20% less;
- Allergies and asthma of 18-25% less;
- Non-specific health and discomfort effects of 20-50% less.

Energy Basics Systems Approach Maintenance Soft Benefits of Green Building New Technologies

HEALTHIER LIGHTING

MANUFACTURING EXTENSION PARTNERSHIP

Light influences how **productive** we are at work, how well we learn, and how quickly we **recover** from illness.

New products promote health – usually by adjusting the brightness and color of the light during the day to mimic natural light.

PURDUE UNIVERSITY

MANUFACTURING EXTENSION PARTNERSHIP

COLOR TEMPERATURE (CCT)

Ē

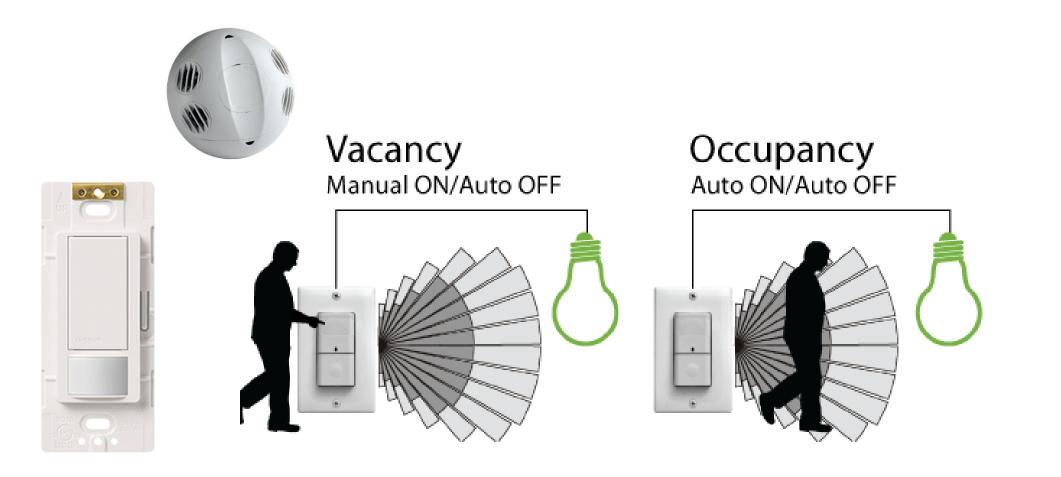
6000K 5000 K "COOL" 5000K BLUE SKY 4100K FLUORESCENT 4000 K 4000K METAL HALIDE 3500K METAL HALIDE 3500 K 3500K FLUORESCENT "NUETRAL" 3000 K 3000 K FLUORESCENT 2800K HALOGEN INCANDESCENT 2800 K 2800 K FLUORESCENT 2500 K 2500K INCANDESCENT "WARM" 2000 K HIGH PRESSURE SODIUM

CORRELATED COLOR TEMPERATURES (CCT) OF COMMON LIGHT SOURCES

COLOR TEMPERATURE

IHG Brand hotels launched pilot of new "human-centric lighting" in 2019.

Tuned LED colors enable better circadian rhythm syncing for better quality sleep.



AUTOMATED CONTROL SYSTEMS

Ę

WIRELESS CONTROL SYSTEMS

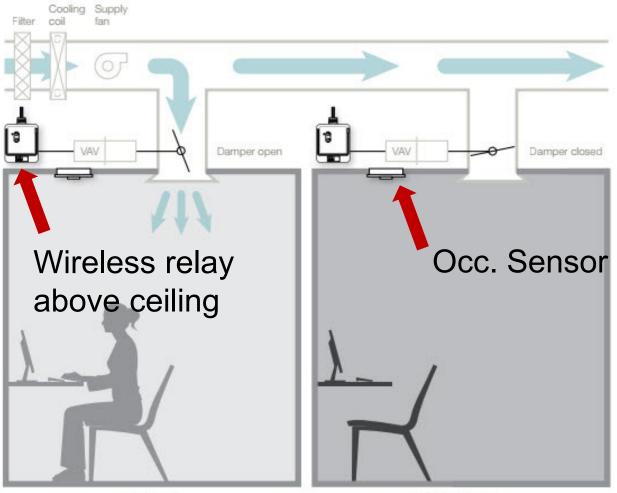
Ē

WIRELESS CONTROL SYSTEMS

Ē

WIRELESS CONTROL SYSTEMS

- Easy to retrofit
- Create new zones using existing junction boxes
- One power pack can control multiple fixtures
- Dimmable
- Works with fluorescent or LED
- Integrate daylight harvesting


WIRELESS CONTROL SYSTEMS

MANUFACTURING EXTENSION PARTNERSHIP

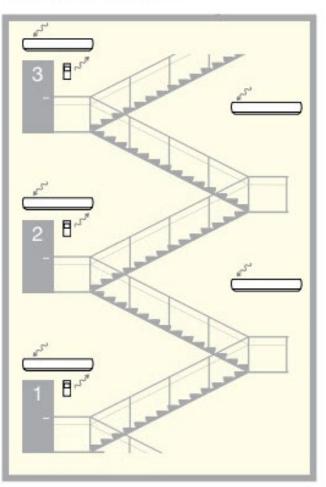
Ę

Control HVAC w/ occ. sensor

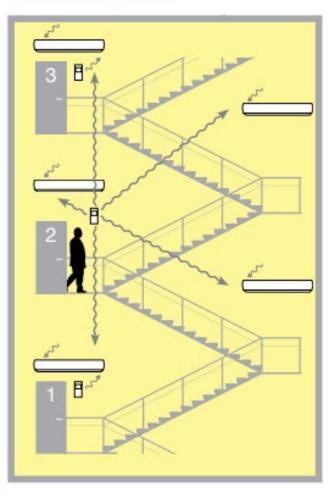
Occupied

Unoccupied

WIRELESS STAIRWELL SOLUTION


MANUFACTURING EXTENSION PARTNERSHIP

ALL lights automatically brighten when sensor indicates a person has entered.


ALL lights stay on until person has exited.

Adjustable dimmability.

Unoccupied: 10% light level

Occupied: 50% light level

INSTANT-FIT LED RETROFITS

MANUFACTURING EXTENSION PARTNERSHIP

- Plug 'n play solution
- No rewiring
- Leave your existing electronic ballast
- 2100 Lumens
- **4000**K
- 17-Watt

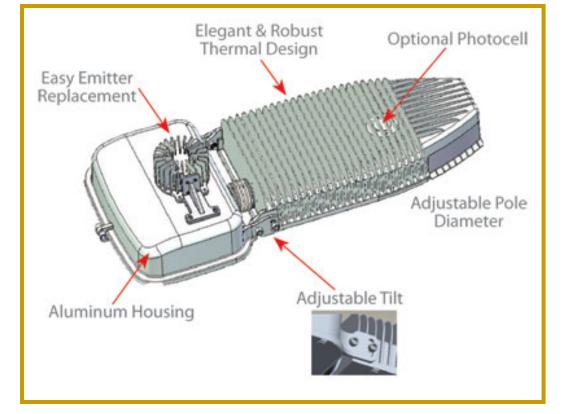
PURDUE UNIVERSITY

DRIVER-LESS LEDS

MANUFACTURING EXTENSION PARTNERSHIP

Drivers are often the first component of a lighting system to fail

Power system for lighting using a central hub, with each fitting connected directly to a bus cable.


The latest innovation is power-over-Ethernet, which provides electricity through data cables.

PLASMA LAMPS

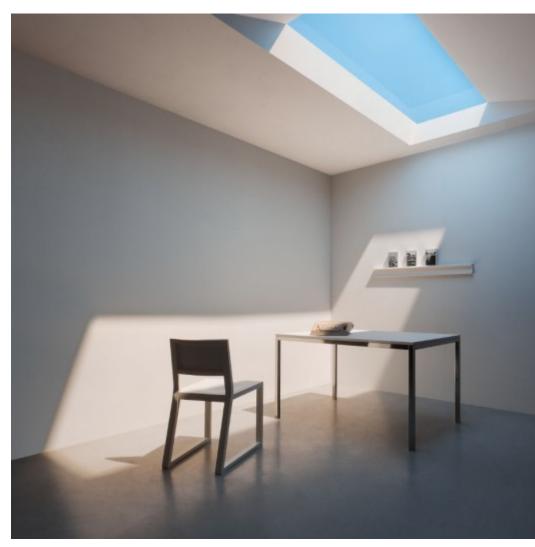
Ę

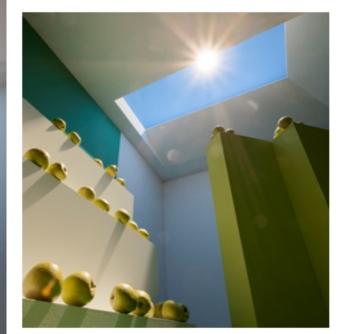
MANUFACTURING EXTENSION PARTNERSHIP

No electrode Long life Good efficacy Good CRI Compact beam

PLASMA STREETLIGHT RETROFITS

MANUFACTURING EXTENSION PARTNERSHIP




 Goo LEP-based street lights installed in Scottsburg, IN
Chose LEP based on its "brighter output, exceptional color quality, greater energy savings, and long life."

Projects \$70,000 in annual energy savings – in part due to the fact that the LEP lights can be dimmed down to 20% of full brightness.
Rated for a 50,000-hour life.

LED SKYLIGHTS

GRAPHENE LED

MANUFACTURING EXTENSION PARTNERSHIP

Discovered in 2004, Graphene is a transparent electrode material that is ideal for use in electrical and optical devices.

- High conductivity = brighter, longerlasting and more efficient sources
- No self-heating issue because of graphene's ability to spread heat and reduce thermal boundary resistance.

FOR MORE INFORMATION:

MANUFACTURING EXTENSION PARTNERSHIP

Kelly Weger

Lead Project Manager -Sustainability

Purdue Manufacturing Extension Partnership

734.320.5908

weger@purdue.edu

